1,021 research outputs found

    The Refractive Index of Silicon at Gamma Ray Energies

    Full text link
    The index of refraction n(E_{\gamma})=1+\delta(E_{\gamma})+i\beta(E_{\gamma}) is split into a real part \delta and an absorptive part \beta. The absorptive part has the three well-known contributions to the cross section \sigma_{abs}: the photo effect, the Compton effect and the pair creation, but there is also the inelastic Delbr\"uck scattering. Second-order elastic scattering cross sections \sigma_{sca} with Rayleigh scattering (virtual photo effect), virtual Compton effect and Delbr\"uck scattering (virtual pair creation) can be calculated by integrals of the Kramers-Kronig dispersion relations from the cross section \sigma_{abs}. The real elastic scattering amplitudes are proportional to the refractive indices \delta_{photo}, \delta_{Compton} and \delta_{pair}. While for X-rays the negative \delta_{photo} dominates, we show for the first time experimentally and theoretically that the positive \delta_{pair} dominates for \gamma rays, opening a new era of \gamma optics applications, i.e. of nuclear photonics.Comment: 4 pages, 3 figure

    Impact of ultrafast electronic damage in single particle x-ray imaging experiments

    Full text link
    In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources.Comment: 15 pages, 3 figures submitted to PR

    Ion-Size Effect at the Surface of a Silica Hydrosol

    Full text link
    The author used synchrotron x-ray reflectivity to study the ion-size effect for alkali ions (Na+^+, K+^+, Rb+^+, and Cs+^+), with densities as high as 4×1018−7×10184 \times 10^{18}- 7 \times 10^{18} m−2^{-2}, suspended above the surface of a colloidal solution of silica nanoparticles in the field generated by the surface electric-double layer. According to the data, large alkali ions preferentially accumulate at the sol's surface replacing smaller ions, a finding that qualitatively agrees with the dependence of the Kharkats-Ulstrup single-ion electrostatic free energy on the ion's radius.Comment: 17 pages, 4 figure

    Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

    Full text link
    Surface sensitive synchrotron-X-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L3L_3 Cs+^+ resonance, we provide, for the first time, spatial counterion distributions (Cs+^+) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H3_3O+^+ at the interface leads to proton-transfer back to the phosphate group by a high contact-potential, whereas high salt concentrations lower the contact-potential resulting in proton-release and increased surface charge-density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions

    Nearly strain-free heteroepitaxial system for fundamental studies of pulsed laser deposition: EuTiO3 on SrTiO3

    Full text link
    High quality epitaxial thin-films of EuTiO3 have been grown on the (001) surface of SrTiO3 using pulsed laser deposition. In situ x-ray reflectivity measurements reveal that the growth is two-dimensional and enable real-time monitoring of the film thickness and roughness during growth. The film thickness, surface mosaic, surface roughness, and strain were characterized in detail using ex situ x-ray diffraction. The thicnkess and composition were confirmed with Rutherford Backscattering. The EuTiO3 films grow two-dimensionally, epitaxially, pseudomorphically, with no measurable in-plane lattice mismatch.Comment: 7 pages, 6 figure

    Capillary Filling of Anodized Alumina Nanopore Arrays

    Full text link
    The filling behavior of a room temperature solvent, perfluoromethylcyclohexane, in approximately 20 nm nanoporous alumina membranes was investigated in situ with small angle x-ray scattering. Adsorption in the pores was controlled reversibly by varying the chemical potential between the sample and a liquid reservoir via a thermal offset, Δ\DeltaT. The system exhibited a pronounced hysteretic capillary filling transition as liquid was condensed into the nanopores. These results are compared with Kelvin-Cohan theory, with a modified Derjaguin approximation, as well as with predictions by Cole and Saam.Comment: 4 pages, 3 figures, pre-proof

    Induced Crystallization of Polyelectrolyte-Surfactant Complexes at the Gas-Water Interface

    Full text link
    Synchrotron-X-ray and surface tension studies of a strong polyelectrolyte (PE) in the semi-dilute regime (~ 0.1M monomer-charges) with varying surfactant concentrations show that minute surfactant concentrations induce the formation of a PE-surfactant complex at the gas/solution interface. X-ray reflectivity and grazing angle X-ray diffraction (GIXD) provide detailed information of the top most layer, where it is found that the surfactant forms a two-dimensional liquid-like monolayer, with a noticeable disruption of the structure of water at the interface. With the addition of salt (NaCl) columnar-crystals with distorted-hexagonal symmetry are formed.Comment: 4 pages, 5 eps figure

    Longitudinal magnetic excitations in classical spin systems

    Full text link
    Using spin dynamics simulations we predict the splitting of the longitudinal spin wave peak in all antiferromagnets with single site anisotropy into two peaks separated by twice the energy gap at the Brillouin zone center. This phenomenon has yet to be observed experimentally but can be easily investigated through neutron scattering experiments on MnF2_2 and FeF2_2. We have also determined that for all classical Heisenberg models the longitudinal propagative excitations are entirely multiple spin-wave in nature.Comment: four pages three figures, the last two postscript files are two parts of the third figur

    Biochemistry of malaria parasite infected red blood cells by X-ray microscopy

    Get PDF
    Red blood cells infected by the malaria parasite Plasmodium falciparum are correlatively imaged by tomography using soft X-rays as well as by scanning hard nano-X-ray beam to obtain fluorescence maps of various elements such as S and Fe. In this way one can deduce the amount of Fe bound either in hemoglobin or in hemozoin crystals in the digestive vacuole of the malaria parasite as well as determine the hemoglobin concentrations in the cytosols of the red blood cell and of the parasite. Fluorescence map of K shows that in the parasite's schizont stage the K concentration in the red blood cell cytosol is diminished by a factor of seven relative to a pristine red blood cell but the total amount of K in the infected red blood cell is the same as in the pristine red blood cell
    • …
    corecore